Asymptotic Euler–Maclaurin formula over lattice polytopes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Euler-Maclaurin formula for Delzant polytopes

Formulas for the Riemann sums over lattice polytopes determined by the lattice points in the polytopes are often called Euler-Maclaurin formulas. An asymptotic Euler-Maclaurin formula, by which we mean an asymptotic expansion formula for Riemann sums over lattice polytopes, was first obtained by Guillemin-Sternberg [GS]. Then, the problem is to find a concrete formula for the each term of the e...

متن کامل

Lattice Points inside Lattice Polytopes

We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩ lZ (provided it is non-empty) contains a point whose coefficient of asymmetry with respect to P is at most 8d · (8l+7) 2d+1 . If, moreover, P is a simplex, then this bound can be improved to 9 · (8l+ 7) d+1 . This implies that the maximum volume of a lattice polytope P ⊂ R d containing exactly k ≥ 1 points of lZ in its interior, is...

متن کامل

Lattice Points in Lattice Polytopes

We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩lZ (provided it is non-empty) contains a point whose coefficient ofasymmetry with respect to P is at most 8d · (8l+7)2d+1. If, moreover,P is a simplex, then this bound can be improved to 8 · (8l+ 7)d+1.As an application, we deduce new upper bounds on the volume ofa lattice polytope, given its ...

متن کامل

polymake and Lattice Polytopes

The polymake software system deals with convex polytopes and related objects from geometric combinatorics. This note reports on a new implementation of a subclass for lattice polytopes. The features displayed are enabled by recent changes to the polymake core, which will be discussed briefly.

متن کامل

Lattice Polytopes of Degree

Abstract. A theorem of Scott gives an upper bound for the normalized volume of lattice polygons with exactly i > 0 interior lattice points. We will show that the same bound is true for the normalized volume of lattice polytopes of degree 2 even in higher dimensions. The finiteness of lattice polytopes of degree 2 up to standard pyramids and affine unimodular transformation follows from a theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2011

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2010.08.011